Concerning the Binding Site on Plastocyanin for its Natural Redox Partner Cytochrome f

Douglas Beoku-Betts, Stephen K. Chapman, C. Victor Knox, and A. Geoffrey Sykes" *Department of Inorganic Chemistry, The University, Newcastle upon Tyne NEI 7RU, U.K.*

From pH effects, competitive inhibition, and **Crlll** modification, it **is** concluded that cytochrome f binds at the negative patch on plastocyanin incorporating residues 42-45.

Single Cu (type 1) plastocyanin is one of a number of metalloproteins involved in electron transport between photosystems II and I in the chloroplast of higher plants.¹ Inorganic complexes have been used extensively as probes for redox reactivity, recent experiments having indicated two sites on plastocyanin at which electron transfer can occur.² From n.m.r. line-broadening, it has been demonstrated that the negatively charged complex $Cr(CN)_6^{3-}$ exhibits specificity for a site in the vicinity of His **87** (the so-called north site), while positively charged complexes such as Cr(1,lO-phenanthroline)₃³⁺, and $Cr(NH₃)₆³⁺$, interact at a site close to Tyr 83, which is adjacent to a negative patch incorporating residues $42-45$ (the east site), $3,4$ Figure 1. It has also been shown by competitive inhibition that cytochrome c, a protein carrying an overall 8+ charge in the reduced state, reacts at the east site.⁵ Having tested a number of different approaches, we are now in a position to investigate and comment on the much more important question of the reactivity of plastocyanin

Figure 1. The structure of plastocyanin as reported **by** Freeman.'

with its natural partners cytochrome f (reductant) and P700 (oxidant). Here we report experiments concerned with the determination of the reaction site for cytochrome f on plastocyanin in aqueous solution.

The blue Cu protein plastocyanin (m.wt. 10 *500)* occurs in all higher plants **(99** amino acids), and green and bluegreen algae.⁶ Freeman and colleagues have determined the structure of poplar plastocyanin to 1.6 Å resolution.⁷ The reduction potential of 370mV (pH 7) lies between that of cytochrome f (360 mV) and P700 (520 mV).8 Cytochrome f (m.wt. 30 000, *ca.* 280 amino acids) has a substantial overall negative charge at pH 7 (pI 5.5).⁹ An assessment of its reactivity with a range of inorganic complexes has been completed in this laboratory. Following experiments using plastocyanin, PCu^{II}, modified at $42-45$ by attachment of a single Cr^{III}, Farver *et al.* have suggested that oxidation by P700 occurs at the east site, and reduction by cytochrome **f** (by implication) is at the north site.¹⁰ However, a study by Burkey and Gross¹¹ involving P700 oxidation of PCu^I, modified by ethylenediamine attachment at $42-45$, reveals that there is very little decrease in K_m as a result of modification. This result is contrary to the assignment of Farver *et al.*¹⁰ We therefore decided to attempt to resolve this difference for the plastocyanin reaction with cytochrome f using three different approaches established in our previous studies.

The methods used include, (a) reaction of PCu^{II} modified by attachment of Cr^{III} (procedure as described by Farver et al^{10}) with cytochrome $f(II)$, (b) competitive inhibition of the PCu^{II} oxidation of cytochrome $f(II)$ using a 5+ redox inactive complex known to associate at the negative patch on plastocyanin, 5 and (c) pH studies to ascertain whether the protein acid dissociation pK_a observed for the reduction of PCu^{II} by cytochrome $c(\text{II})$ (4.9) and Ru(NH₃)(pyridine)²⁺ $(pK_a 5.0)$, and known to be a characteristic of the east site,⁵ is also observed in the cytochrome $f(II)$ reduction of PCU^{II} . All the studies described are with plastocyanin from parsley leaves,¹² and cytochrome f from cabbage, 9 sources which we have used successfully in other studies.

The Cr modification of PCu^{II} at 42-45 produces a marked inhibition of the reaction with cytochrome $f(n)$. At 10 °C and pH 8.0 $(10^{-2} \text{ M Tris-HCl})$, $I = 0.20 \text{ M (NaCl)}$, the rate constant of 2.1×10^{7} M⁻¹ s⁻¹ for reduction of native PCu^{II}

Figure 2. The competitive inhibition of the plastocyanin PCu^{II} $(5.0 \times 10^{-6} \text{ m})$ oxidation of cytochrome f(II) $(5.0 \times 10^{-7} \text{ m})$ by redox inactive (NH,),Co.NH,*Co(NH,),"+ at 10 **"C,** pH **7** (Tris-HCl), $I = 0.20$ M (NaCl).

is decreased by 36% . At lower pH's of 5.1 and 5.8 $[10^{-2}$ M 2-(N-morpholino)ethane sulphonic acid (MES)/NaOH], 65 $\%$ decreases are observed. Moreover attaching two Cr^{III}'s to PCu^{II} (modification procedure¹⁰ repeated) a 90% decrease is observed. Assuming the second Cr binds at or near to 42-45, these results clearly suggest an involvement of the east site of plastocyanin in the reaction with cytochrome f.

Competitive inhibition studies were carried out with the 5+ redox inactive $Co^{III}₂$ complex $(NH₃)₅Co¹NH₂Co (NH₃₎₅⁵⁺$, which is known to associate strongly with PCu¹¹ $(K = 2.2 \times 10^3 \text{ M}^{-1}$ at 10 °C, pH 7.5, $I = 0.2 \text{ M}$) at the east site. Rate constants decreased significantly with increasing amounts of $Co^{H1}₂$, Figure 2. We have not found this complex to be similarly effective in other studies involving cytochrome **f,** and conclude that the inhibition indicates an involvement of the east site of plastocyanin.

Niwa *et a/.13* have published a pH profile of rate constants for the reduction of PCu^{II} with cytochrome $f(n)$. This gives a pK_a of 4.9 (our calculation), which agrees well with values observed for the cytochrome c(II) and $Ru(NH₃)₅(pyridine)²⁺$ reductions of PCu¹¹. We have repeated the cytochrome f study and obtained a pK_a of 5.1 in good agreement.

All three approaches described therefore give a firm indication of involvement of the east site of plastocyanin in the reaction with cytochrome **f,** a result contrary to the suggestion of Farver et *al.*¹⁰ Our results are of considerable further interest because the responses observed with cytochrome $f(II)$ as reductant clearly suggest that either there is a positive patch on cytochrome f, or that electrostatic considerations are of secondary importance in the interaction of these two partners. Although cytochrome **f** carries an overall negative charge and is, for example, strongly held on a **DEAE** cellulose column, it does have 19-24 lysines and 7-11 arginines (amino-acid compositions of charlock⁹ and spinach¹⁴), and its reactions with negatively charged inorganic complexes suggest **a** functional positively charged region. One possibility is that this is located in the vicinity of an exposed heme edge

of cytochrome **f.** The negative patch on plastocyanin may of course be **a** recognition site which **is** part of a much broader contact region between the two proteins.

We thank the S.E.R.C. for post-doctoral (C. **V.** K.) and post-graduate **(S.** K. C.) support.

Received, 6th June 1983; Corn. 729

Ref ere nces

- See *e.g.,* **A.** R. Crofts and P. M. Wood, in 'Current Topics in Bioenergetics, Vol. 7: Photosynthesis,' Part **A,** eds. D. R. Sanadi and L. P. Vetnan, pp. 175-244, Academic Press, New York, 1978.
- **A.** G. Lappin, M. *C.* Segal, D. **C.** Weatherburn, and **A.** G. Sykes, J. *Am. Chem. Soc.,* 1979, **101,** 2297, and unpublished work.
- D. **J.** Cookson, **M.** T. Hayes, and P. **E.** Wright, *Nature,* 1980, **283,** 682; *Biochim. Biophys. Acta,* 1980, **591,** 162.
- P. M. Handford, H. **A.** 0. Hill, R. W.-K. Lee, R. **A.** Henderson, and A. G. Sykes, *J. Inorg. Biochem.*, 1980, 13, 83.
- *5* **S.** K. Chapman, D. M. Davies, **A.** D. Watson, and **A. G.** Sykes, meeting, Bloomington, Indiana, 1982, A.C.S. publication, ed. M. H. Chisholm, 1983, No. 211, pp. 177-192.
- *6* D. Boulter, *G.* B. Haslett, D. Peacock, **J. A.** M. Ramshaw, and M. D. Scawen, in 'Plant Biochemistry 11,' ed. D. H. Northcote, VoI. 13, University Park, Baltimore, 1977, pp. 1-14.
- 7 P. M. Colman, **H.** C. Freeman, **J.** M. Guss, **M.** Murata, V. **A.** Norris, J. **A.** M. Ramshaw, and M. P. Venkatappa, *Nature,* 1978, **272,** 319; J. M. Guss and **H.** C. Freeman, *J. Mol. Biol.,* in the press.
- 8 **A.** G. Lappin, in 'Metal Ions in Biological Systems,' ed. **H.** Sigel, Vol. 13, Dekker, New York, 1981, pp. 15-71.
- 9 **J.** C. Gray, *Eur. J. Biochem.,* 1978, *82,* 133.
- 10 0. Farver, *Y.* Shahak, and I. Pecht, *Biochemistry,* 1982, **21,** 1885.
- 11 K. 0. Burkey and **E.** L. Gross, *Biochemistry,* 1982, **21,** 5886.
- 12 M. Plesnitar and D. **S.** Bendall, *Biochim. Biophys. Acta,* 1970, **216,** 192.
- 13 S. Niwa, H. Ishikawa, **S.** Nikai, and T. Takabe, J. *Biochern.,* 1980, **88,** 1177.
- 14 N. Nelson and **E.** Racker, *J. Biol. Chem.,* 1972, **247,** 3848.